

Physics Of Failure for Complex Systems

Manufacturing Technologies for Integrating Nano-to-Millimeter Sized Systems —The State-of-the-Art, and Opportunities for Further Advances —

DARPA/NIST Workshop March 11-12, 1999

Michael Pecht
Professor and Director
CALCE Electronic Products and Systems Consortium
University of Maryland, College Park, MD 20742.
http://www.calce.umd.edu

Electronics Reliability Prediction History

Reliability Stress Analysis for	Nov 1956	RCA models for computing failure
Electronic Equipment (TR-1100)		rates
MIL-HDBK-217A	Dec 1965	Single point failure rate of 0.4
	Preparing Activity: Navy	fr/mhr for all monolithic ICs
MIL-HDBK-217B	July 1973 Preparing Activity: Air Force - Rome Labs	Exponential distribution based models
MIL-HDBK-217C	April 1979 Preparing Activity: Air Force - Rome Labs	Band-aid for memory. For example when 4k RAM model was extrapolated to 64K MTBF = 13 seconds
MIL-HDBK-217D	Jan 1982 Preparing Activity: Air Force - Rome Labs	Band-aid. No technical change in format
MIL-HDBK-217E	Oct 1987 Preparing Activity: Air Force - Rome Labs	Band-aid. No technical change in format
MIL-HDBK-217F	Dec 1990 Preparing Activity: Air Force - Rome Labs	Band-aid. No technical change in format

Physics

of

Failure

Creating Analytical
Models using
Underlying Constitutive
Relations:

Physical Phenomena

Physical Failure of Components and Devices

Mechano-Stochastic Failure Analysis Methodology (Circa 1983)

Single Chip Package Evolution

The Known Good Die (KGD) Problem in the Evolution of Multichip Modules

Physics of Failure Process INPUTS Operational Loads Power dissipation, Life Cycle **Sensitivity Analysis OUTPUTS** voltage, current, and **Environmental** frequency **Evaluate sensitivity Profiles** of the product life Ranked list to the application of potential failure **Stress Analysis** Define the **Environmental** mechanisms safe-operating region Loads **Thermal** for the desired life and sites Temperature, relative Thermo-mechanical cycle profile humidity, pressure, shock and their cyclic Radiation Design ranges, rate of change **Hygro-mechanical Define potential** tradeoffs and time and spatial Electromagnetic screening and gradients. Vibration-shock accelerated test The life cycle includes Stress Diffusion conditions transportation, management storage, handling and application solutions environments **Reliability Assessment Screening** conditions **Product materials. Determines appropriate** geometry, and failure mechanism model(s) architecture Accelerated and calculates time-to-failure for each failure mechanism test conditions

In2m System Example

<u>Problem:</u> What types of thermal management schemes allow integration across varying length scales from µm to mm?

<u>Problem:</u> The combination of materials (micro-metrology) and especially the interconnects between In2m subsystem technologies must:

- enable quality manufacture and precipitable defects across sizes
- meet the application reliability needs

Kirkendall voiding in aluminum-gold interconnect

Accompanying loss of strength

<u>Problem:</u> As integration level moves from nano to millimeter, different connection topologies become relevant. Topology determines the number of connection crossovers which in turn drives:

- Design costs
- Assembleability
- Reliability
- Maintainability

Integration Level	Relavent
	Connection
	Topologies
Device to device	Planar
Die to die	Planar
	Plane-in-plane
Chip to chip	Planar
	Plane-in-plane
Die to module (MCM)	Plane-in-plane
Chip to board	Plane-in-plane
	Edge-to-plane
Module to board	Plane-in-plane
	Edge-to-plane
Board to board	Plane-in-plane
	Edge-to-plane
	Edge-to-edge

<u>Problem:</u> How can systems composed of many dissimilar components be physically partitioned to minimize a combination of assembly, test, and rework costs?

Problem: The packaging of the system must

- provide environmental protection
- enable connectings to other system
- not interfere with the operation of the system

<u>Problem:</u> There is a need to qualify a system for the target application effectively and efficiently

Virtual Qualification

